Evaluation of the Hypotonic Infant and Child

Basil T. Darras, M.D.
Neuromuscular Program
Boston Children’s Hospital
Harvard Medical School
Boston, MA, USA
Disorders of the peripheral nervous system can generally be divided into three major categories, based on anatomic localization:

- **Neurogenic disorders**, including *nerve and motor neuron diseases*
- Disorders of the *neuromuscular junction*
- **Myopathies**, including *muscular dystrophies*
Clinical approach to neuromuscular disorders of infancy and childhood

NEONATES, INFANTS and CHILDREN

- Hypotonia
- Muscle Weakness
Hypotonia

Outline

- Hypotonia
 - Definition
 - Assessment
- Neuromuscular diseases in the hypotonic infant and child
- Hypotonia
 - Stepwise diagnostic approach
Muscle tone

Definition

Muscle tone is the resistance of muscle to stretch

- Postural tone (i.e. antigravity)
- Phasic tone
Hypotonia

Definition
Reduction in postural tone (i.e. antigravity), with or without an alteration in phasic tone (muscle stretch reflexes)
Hypotonia

Differential anatomic diagnosis

- Brain
- Spinal cord
- Anterior horn cell
- Peripheral nerve
- Neuromuscular junction
- Muscle fiber
Hypotonia

Assessment

History

Physical examination
 • General physical examination
 • Motor examination
 • Primary neonatal reflexes
 • Sensation
 • Hypotonia-focused examination
General physical examination

- Normal examination
- Dysmorphic features
- Organomegaly
- Cardiac failure
- Abnormalities of genitalia
- Respiratory irregularities/failure
- Dislocation of the hips
- Arthrogryposis
Hypotonia in utero

- Dislocation of the hips
- Arthrogryposis
Hypotonia

Physical examination

- General physical examination
- Passive manipulation of the limbs
- Muscle power, muscle stretch reflexes
- Appearance (flaccid), motility (e.g. antigravity)
- Neonatal reflexes, sensation
- Traction response ("head lag")
- Vertical suspension ("slips through")
- Horizontal suspension ("drapes over")
- "Scarf" sign, "Heel to ear or chin"
Courtesy NP Rosman, MD, Boston City Hospital
Hypotonia

Physical examination

- General physical examination
- Passive manipulation of the limbs
- Muscle power, muscle stretch reflexes
- Appearance (flaccid), motility (e.g. antigravity)
- Neonatal reflexes, sensation
- Traction response ("head lag")
- Vertical suspension ("slips through")
- Horizontal suspension ("drapes over")
- "Scarf" sign, "Heel to ear or chin"
Hypotonia

Physical examination

- General physical examination
- Passive manipulation of the limbs
- Muscle power, muscle stretch reflexes
- Appearance (flaccid), motility (e.g. antigravity)
- Neonatal reflexes, sensation
- Traction response ("head lag")
- Vertical suspension ("slips through")
- Horizontal suspension ("drapes over")
- "Scarf" sign, "Heel to ear or chin"
THE TRACTION RESPONSE
Physical examination

- General physical examination
- Passive manipulation of the limbs
- Muscle power, muscle stretch reflexes
- Appearance (flaccid), motility (e.g. antigravity)
- Neonatal reflexes, sensation
- Traction response ("head lag")
- Vertical suspension ("slips through")
- Horizontal suspension ("drapes over")
- "Scarf" sign, "Heel to ear or chin"
HYPOTONIA

PHYSICAL EXAMINATION

<table>
<thead>
<tr>
<th>HEEL TO EAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCARF SIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEAD LAG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VENTRAL SUSPENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Approach to diagnosis

- **Cerebral or central hypotonia** (about 2/3)

- **Lower motor unit or peripheral hypotonia** (about 1/3)
Cerebral (central) hypotonia

- History consistent with a CNS insult
- Global developmental delay, seizures
- Microcephaly, dysmorphic features
- Malformation of other organs

- Weakness less than degree of hypotonia (non-paralytic hypotonia)
- Movement through postural reflexes
- SRs: Normal or brisk, clonus, Babinski sign
- Brisk and/or persistent infantile reflexes
Fig. 7
The asymmetrical tonic neck reflex.
ATNR
Lower motor unit (peripheral) hypotonia

- No abnormalities of other organs
- No global delay, delayed gross motor development
- Muscle atrophy, fasciculations
 - Weakness in proportion/excess to hypotonia (*paralytic hypotonia*)
 - Decreased antigravity limb movements
 - Failure of movement on postural reflexes
 - Absent or depressed SRs
Combined cerebral and motor unit hypotonia

- Congenital myotonic dystrophy
- Congenital muscular dystrophies
- Peroxisomal disorders
- Leukodystrophies
- Mitochondrial encephalomyopathy
- Neuroaxonal dystrophy
- Familial dysautonomia
- Asphyxia secondary to motor unit disease
Hypotonia

Systemic diseases

- Sepsis
- Congenital heart disease
- Hypothyroidism
- Rickets
- Malabsorption, malnutrition
- Renal tubular acidosis
Muscle tone

Determinants

- Gamma/alpha motor system
- Visco-elastic properties of muscle and connective tissue
- Joint and tendon resistance
Hypotonia

Connective tissue disorders

- Marfan syndrome
- Ehlers-Danlos syndrome
- Congenital laxity of ligaments
Cerebral (central) hypotonia

- Chromosomal disorders
- Other genetic defects
- Acute hemorrhagic and other brain injury
- Hypoxic/ischemic encephalopathy
- Chronic non-progressive encephalopathies
- Peroxisomal disorders (Zellweger syndrome, neonatal ALD, etc.)
- Metabolic defects
- Drug intoxication
- “Benign” congenital hypotonia
Neuromuscular diseases in the hypotonic infant and child

<table>
<thead>
<tr>
<th>Anterior horn cell / Peripheral nerve</th>
<th>Neuromuscular junction</th>
<th>Muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal muscular atrophies</td>
<td>Transient neonatal MG</td>
<td>Congenital muscular dystrophies</td>
</tr>
<tr>
<td>Hypoxic-ischemic myelopathy</td>
<td>Congenital myasthenic syndromes</td>
<td>Congenital myotonic dystrophy</td>
</tr>
<tr>
<td>Traumatic myelopathy</td>
<td>Hypermagnesemia</td>
<td>Infantile FSHD</td>
</tr>
<tr>
<td>Neurogenic arthrogryposis</td>
<td>Aminoglycoside toxicity</td>
<td>Congenital myopathies</td>
</tr>
<tr>
<td>Congenital neuromopathies</td>
<td>Infantile botulism</td>
<td>Metabolic myopathies</td>
</tr>
<tr>
<td>Axonal</td>
<td></td>
<td>Mitochondrial myopathies</td>
</tr>
<tr>
<td>Hypomyelinating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dejerine-Sotas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giant axonal neuropathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammatory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spinal muscular atrophy

- SMA, type I (severe)
 - Onset: birth to 6 months
 - Course: never sit unsupported
 - Death: usually < 2 years

- SMA, type II (intermediate)
 - Onset: < 18 months
 - Course: never stand or walk but sit at some time
 - Survival: 98.5% to age 5 years, 68.5% to age 25 years

- SMA, type III (mild)
 - Onset: > 18 months (IIIA <3 years, IIIB >3 years)
 - Course: able to stand and walk at some time
 - Survival: Almost normal life span
Chromosome 5

c840 C>T transition

ESS

ESE

SMN2

90-95%

SMN1

100%

Truncated protein SMNΔ7

Full length SMN protein (294 AA)

SMN full length protein (294 AA)
<table>
<thead>
<tr>
<th>SMA Type & SMN2 Copy Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA I</td>
</tr>
<tr>
<td>SMA II</td>
</tr>
<tr>
<td>SMA III</td>
</tr>
<tr>
<td>Carrier</td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>Normal?</td>
</tr>
</tbody>
</table>
Muscle disorders in the hypotonic infant

- **Classical CMD**
 - Merosin-deficient CMD
 - Primary merosin deficiency
 - Secondary merosin deficiency
 - Merosin-positive CMD
 - Classical CMD without distinguishing features
 - Rigid spine syndrome
 - CMD with distal hyperextensibility (Ullrich type)
 - CMD with mental retardation or sensory abnormalities

- **CMDs with CNS abnormalities**
 - Fukuyama muscular dystrophy
 - Muscle-eye-brain disease
 - Walker-Warburg syndrome
Merosin-deficient CMD (MDC1A)
Myotonic dystrophy syndromes

- Myotonic dystrophy, type 1 (DM1)
- Congenital myotonic dystrophy (DM1)
- Myotonic myopathy, type 2 (DM2, PROMM)
Congenital DM1
Congenital myotonic dystrophy (DM1)

- **Inheritance:** 15%-25% of offspring of affected myotonic dystrophy mothers

- **Features:** hypotonia, poor feeding, facial weakness, club feet, MR

- **Labs:**
 - CK level: usually normal
 - EMG: often no myotonia
 - Large CTG repeat expansion
Creatine Phosphokinase (CPK)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>150–200 U/L</td>
</tr>
<tr>
<td>Non-specific</td>
<td>up to 300 U/L</td>
</tr>
<tr>
<td>Congenital myopathy</td>
<td>up to 500 U/L</td>
</tr>
<tr>
<td>Spinal muscular atrophy</td>
<td>up to 500 U/L</td>
</tr>
<tr>
<td>Myopathy</td>
<td>500–1000 U/L</td>
</tr>
<tr>
<td>Muscular dystrophy</td>
<td>>1000 U/L</td>
</tr>
</tbody>
</table>
Approach to Hypotonia and Weakness

- Detailed history and physical examination
 - Exclude systemic illness, congenital laxity of ligaments
 - Test tendon reflexes, antigravity limb movements, etc.

CENTRAL hypotonia suspected
- MRI/MRS, metabolic tests, chromosomes/PWS, VLCFAs, LP?

PERIPHERAL hypotonia suspected
- Test mother first; if myotonic,
 - DNA test for 19q CTG repeat expansion
 - History of myasthenia gravis in mother?
- Electrolytes, CPK, lactate, pyruvate, carnitine
- Consider EMG/NCS for:
 - Myasthenia (Tensilon test)
 - Botulism
 - Neuropathy, AHC disease
 - Myopathy

CPK > 10X ULN U/l
- EMG not crucial
- DNA for FKRP, DMD, or other MD
- Brain imaging (MRI)
- Muscle biopsy (if DNA testing negative)

CPK < 10X ULN U/l
- EMG

Neuropathic
- SMN or CMT/DSD testing

Decrement, facilitation
- NM junction defect

Normal, myopathic
- Muscle biopsy
Ευχαριστώ πολύ